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Motivation

Suppose there is some unknown function f (x , z), where x is a
feature and z is a source of randomness e.g.
f (x , z) = fx (x) + fz (z) = 2x + ε(z) with ε(z) ∼ N (0, σ2) for all z .
Task: Approximate/emulate f , given some signal about f e.g.
direct queries of or derivatives of f . Usually focus on fx and use
something simple for fz .
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Motivation

Task: Approximate/emulate f , given some signal about f e.g.
direct queries of or derivatives of f .
We can use various classes of function approximators: linear
models, neural networks etc... or Gaussian Processes
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Motivation

GPs can cover a wide range of function classes and flexibly
identify, probabilistically, which ones are ”good approximations” -
it represents a sequence of random variables - in a Bayesian
updating procedure.
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Gaussian Processes

A GP is f ∼ GP(µ, k), with mean function µ and
covariance/kernel function k such that

1. µ(x) := E[f (x)] for all x ∈ X ,

2. k(x , x ′) := Cov(f (x), f (x ′)) = E[(f (x)− µ(x))(f (x ′)− µ(x ′))]
for all x , x ′ ∈ X .

3. Given a finite subset X := (x1, . . . , xn)ᵀ ∈ Rn×d ,
(f (x1), . . . , f (xn))ᵀ ∼ N (µX , kXX ), where
µX ≡ µ(X ) := (µ(x1), . . . , µ(xn))ᵀ and
kXX = k(X ,X ) ∈ Rn×n such that (kXX )ij = k(xi , xj ). We will
also use the shorthand kx ,X := kᵀX ,x ∈ Rn×1 with
(kX ,x )i = k(xi , x).

The expectation E is over f !
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Gaussian Processes Regression: Noise-free

f |X , y ∼ GP(µ̃, k̃) with

µ̃(x) :=µ(x) + kxXk
−1
XX (y − µX ),

k̃(x , x ′) :=k(x , x ′)− kxXk
−1
XXkXx ′ ,
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Gaussian Processes Regression: Noisy

f |X , y ∼ GP(µ̃, k̃) with

µ̃(x) :=µ(x) + kxX (k−1XX + σ2In)(y − µX ),

k̃(x , x ′) :=k(x , x ′)− kxX (k−1XX + σ2In)kXx ′ ,
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Maximum Likelihood

MLE estimator:

θ∗ = argmaxθN(y ;µ(X ), k(X ,X ) + σ̂2In)

where θ represents the kernel hyperparameters and σ̂. But this
involves O(n3) complexity for inversion of k(X ,X ) and O(n2)
storage for k(X ,X ). In addition, the non-convex optimisation
problem may be difficult to solve.
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Markov Chain Monte Carlo

Similarly, use a prior p(θ) for θ, and obtain a samples of the
posterior distribution p(θ|data) ∝ p(y |X , θ)p(θ). However, note
that to compute p(y |X , θ) we still need deal with the expensive
operations involving k(X ,X ).
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Variational Inference

Given a target distribution p, VI seeks to construct an approximate
distribution q∗ such that

q∗ := argminq∈QKL(q||p) = argminq∈Q
∫
X log q(x)

p(x)q(x)dx ,

where Q is a family of variational distributions that is user-defined.

Figure: Illustration of the variational approximation from Q.
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Sparse Variational Gaussian Processes

Compress all information onto u = (f (z1), . . . , f (zm)), where
{z1, . . . , zm} ⊂ X and m << n. Approximate p(f , u|y) using a
variational approximation q(f , u) := p(f |u)q(u). We construct
q(u) such that

q(u) = argminq∈QKL(p(f , u|y)||q(f , u))

= argminq∈QKL(q(u)||p(u))−
∑n

i=1 Ep(fi |u)q(u)[log p(yi |fi )],

=: argminq∈Q − ELBO(q)

= argmaxq∈QELBO(q)
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SGPR [Titsias, 2009]

This algorithm has per-iteration complexity O(nm2 + m3).
Assuming that q(u) = N(mu,Su), the optimal posterior could be
computed analytically [Titsias, 2009], giving

ELBO(q) = logN(y ; 0,Qff + σ2I )− 1
2σ2 Tr(kXX − Qff ),

q(u) = N(mu, Su),

Su = k−1ZZ + k−1ZZ kZXkXZk
−1
ZZ σ

2,

mu = σ2S−1u k−1ZZ kZX y .

Therefore it only remains to optimise over the kernel
hyperparameters and σ2 using gradient-based optimisation.
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SGPR [Titsias, 2009]

To perform prediction at a new point x ∈ X , we can obtain a
posterior distribution

q(f (x)) :=
∫
p(f (x)|u)q(u)du = N(f (x); µ̃(x), ṽ(x)),

µ̃(x) =kxZk
−1
ZZ mu,

ṽ(x) =kxx − kxZ (k−1ZZ + k−1ZZ Suk
−1
ZZ )kxZ ,

Caution:

• SGPR is only possible for iid Gaussian noise regression
problems

• May not be computationally feasible when n (e.g. label-rich
datasets) or m (e.g. spatiotemporal datasets where the
number of inducing points explode) are very large.
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SVGP [Hensman et al., 2015]

This algorithm has per-iteration complexity O(nbm
2 + m3). We

only take a minibatch nb of the training points and do not use the
optimal posterior q(u).∑n

i=1 Ep(fi |u)q(u)[log p(yi |fi )]− KL(q(u)||p(u))

= EB [ n
nb

∑
B∈B Ep(fi |u)q(u)[log p(yi |fi )]]− KL(q(u)||p(u)),

≈ 1
L

∑L
b=1

n
nb

∑
i∈Bb

Ep(fi |u)q(u)[log p(yi |fi )]− KL(q(u)||p(u)),

where |B| = |Bb| = nb << n with minibatches B or Bb.
Caution:

• May overestimate likelihood variance in practice [Bauer et al.,
2016].

• Need to estimate θ and q(u) in coupled diffusion-like
optimisation procedure.
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Natural Gradients [Adam et al., 2021, Salimbeni et al.,
2018]

Naively, one can simply perform SGD over the Euclidean space for
the mean and variance of q(u): ξ = (mu, Su). But one can also
perform optimisation using the geometry of Q:

ηk+1
t ← ηk

t + ρk∇̃ξELBO(ηk
t , θt),

where ∇̃ξ := F (ξ)−1∇ξ, where F (ξ) is the Fisher information
matrix of q(u; ξ). One can identify a statistical manifold
(Riemannian) with metric tensor being F (ξ) and it can be shown
that ∇̃ξELBO(ξ, θ) is the Riemannian gradient if we pose ξ as
lying on the statistical manifold and perform Riemannian gradient
descent.
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Demo

https://colab.research.google.com/drive/

14yNYE06xTE2hb5Y9npB2QmD9YTH5EUx5?usp=sharing
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Interdomain Inducing Points [Leibfried et al., 2021, van der
Wilk et al., 2020]

We previously set the inducing points as u = f (z), we could also
encoded more generally

Lf (·) =

∫
X
f (x)φ(x)dx ,

where φ(x) are ”inducing features”. Since f is random with sample
distribution P, we have the prior u ∼ N (µu, kuu) with

(µu)i = EP[u] =
∫
X EP[f (x)]φi (x)dx =

∫
X µ(x)φi (x)dx ,

k(ui , uj ) = EP[(ui − (µu)i )(uj − (µu)j )] =
∫
X
∫
X k(x , x ′)φi (x)φj (x

′)dxdx ′.

In addition, given x or f (x), we have

k(f (x), ui ) = EP[(f (x)− µ(x))(uj − (µu)j )] =
∫
k(x , x ′)φi (x

′)dx ′.

Given these 3 terms, we can now fully specify the posterior
distribution q(f (x)).
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Deep Gaussian Processes (DGP; Salimbeni and Deisenroth
[2017])

A deep Gaussian process is f (x) = fL ◦ · ◦ f1(x) such that each layer
is a GP. We can see that this notation is not very well-defined, but
the idea is to propagate samples of f1(x), . . . , fL−1(x) for each
layer. Inducing points are used to define the DGP prior for each
layer so that they are ”input-dependent”. Due to the multi-layered
and intractable nature of the DGP prior, sparse variational GP
techniques are often used to perform inference.
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Latent Variable Gaussian Processes [Dutordoir et al., 2018]

Let wi ∼ N (0, 1) be independent for i = 1, . . . , n. Then define a
latent variable GP (LVGP) as f (xi ,wi ) ∼ GP(µ, k), where µ and k
operate over the tuple (xi ,wi ), with wi being a sample here. Then
the marginal likelihood of this model is

p(y |X ) =

∫
N(y ;µ(X ,W ), k((X ,W ), (X ,W )))dW ,

where W a stacked version of the wi ’s. Due to the intractable
nature of this integral and the fact that we require kernel matrix
operations, sparse variational Gaussian process methods have to be
used to perform inference.
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Many more applications

• State space models [Wilkinson et al., 2021]

• Variational Gaussian Processes (VGP; [Opper and
Archambeau, 2009])

• Stein Gaussian Processes [Pinder et al., 2020]

• etc...
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Conclusion

• Sparse variational approximations to GPs allow for
computational tractability and flexibility for intractable
posteriors

• Much work still in progress for inducing points formulation
and inference techniques

• Scalable software available already, but more work still to
come

Spontaneously updated notes here: https:

//harrisonzhu508.github.io/pdfs/intro_to_gps.pdf

Thank you!
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