
An Overview of Sparse Gaussian Processes

Harrison Zhu
Last updated on November 10, 2021

1 Introduction

Gaussian processes (GPs) are a collections of random variables or functions that have nice properties
that enable them to model or emulate complicated systems. By complicated systems, these can be
aerodynamics, disease transmission, climate or taxi scheduling, to name a few. Many of the systems
that we would like to model are large in nature, rendering classical inference methods for GPs
obsolete. One particular way to fit GP models in "big data" regimes is using sparse variational GPs,
in which the underlying objective becomes a minimisation of a valid divergence measure (such as the
KL-divergence). In contrary to exact or asymptotically exact inference methods (such as MCMC),
these methods suffer from a lack of a principled way to assess approximation quality, although the
numerous possibilities that these approximations, due to the computational tractability, have been
able to unlock in the realm of GP modelling should not be understated.

The focus of these notes is on sparse GPs and so we will omit many interesting aspects of GPs.
However, if you are interested in GPs, I have included a list of interesting references here: [Wilkinson
et al., 2021, Kanagawa et al., 2018, Salimbeni et al., 2018, Dutordoir et al., 2018, De G. Matthews
et al., 2017, Hensman et al., 2015a,b, Alvarez et al., 2012, Duvenaud et al., 2011, Rasmussen and
Williams, 2006].

Most of the contents from this document is taken from [Leibfried et al., 2021, van der Wilk et al.,
2020, Dutordoir et al., 2018, Salimbeni et al., 2018, De G. Matthews et al., 2017, Titsias, 2009,
Hensman et al., 2015b,a, 2013].

2 Background

In this section, we will give a rigorous introduction to GPs. X ⊆ Rd will denote a feature space
with an associated probability distribution Π that admits a density function π. Let (Ω,F ,P) denote a
(abstract) probability space with a distribution P, which we will use to measure GP samples that live
in the space Ω. N (a, b) and N(·; a, b) will denote a Gaussian distribution (possibly multivariate) and
density function respectively, with mean a and covariance b. A stochastic process is g : X × Ω→ R,
where for all x ∈ X , g(x, ·) is a random variable, and for all ω ∈ Ω, g(·, ω) is a function. We usually
omit the second argument for conciseness. See Figure 1 for a graphical illustration.

With a suitable P, g(·, ω) can help flexibly approximate or learn functions f : X → R.

The probability space (Ω,F ,P) where the randomness can be "measured". Let EP[g] denote the
expectation with respect to the distribution P:

EP[g] :=
∫

Ω
g(·, ω)dP(ω).

In general, given any distribution P , we will integrate with respect to where P is defined. For instance,
EΠ will be equivalent to

EΠ[g] :=
∫
X g(x, ·)dΠ(x).

We can also construct a credible interval/set [tδ/2(x), t1−δ/2(x)] ⊆ R such that

P(ω ∈ A : g(x, ω) ∈ [tδ/2(x), t1−δ/2(x)]) = 1− δ
for each x ∈ X and δ ∈ [0, 1].

Figure 1: Graphical model of stochastic processes.

2.1 Gaussian Processes

There are many ways of defining GPs that are all equally valid and can be suitable for different
applications. We will define GPs using a stochastic process viewpoint as it enables more careful
treatments of randomness later on.

Gaussian process regression (GPR): We first look at GP regression (GPR), which is the "hello
world" equivalent of GPs. A GP f is a stochastic process, denoted by the short-hand f ∼ GP(µ, k),
with mean function µ and covariance/kernel function k such that

1. µ(x) := EP[g(x, ·)] =
∫

Ω
g(x, ω)dP(ω) for all x ∈ X ,

2. k(x, x′) := CovP(g(x, ·), g(x′, ·)) = EP[(g(x, ω)− µ(x))(g(x′, ω)− µ(x′))] for all x, x′ ∈ X .

3. Given a finite subset X := (x1, . . . , xn)ᵀ ∈ Rn×d, P is such that (g(x1), . . . , g(xn))ᵀ ∼
N (µX , kXX), where µX ≡ µ(X) := (µ(x1), . . . , µ(xn))ᵀ and kXX = k(X,X) ∈ Rn×n
such that (kXX)ij = k(xi, xj). We will also use the shorthand kx,X := kᵀX,x ∈ Rn×1 with
(kX,x)i = k(xi, x).

See Figure 2 for a graphical illustration of GPs as a collection of random variables.

Intuitively, the kernel measures the similarity between points x and x′, and so following this intuition
one could design suitable kernels for different applications. For instance, k(x, x′) = c2xx′ for c ∈ R
and µ(x) = 0 will give a GP that is equivalent to the function f(x) = dx for d ∈ R, which are linear
functions and is equivalent to performing Bayesian linear regression. Another commonly used kernel
is the RBF kernel k(x, x′) = σ2

k exp
(
− (x−x′)2

2`2k

)
for some parameters σk, `k > 0. See the kernel

cookbook1 for more details on kernels.

Figure 2: Illustration of Gaussian processes as a collection of random variables.

1https://www.cs.toronto.edu/ duvenaud/cookbook/

2

Noise-Free Regression: We now discuss how Gaussian processes can be updated using the
Bayesian update rule when we observe data.

Given finite observations X = (x1, . . . , xn)ᵀ and labels y := (f(x1), . . . , f(xn)) =
(y1, . . . , yn)ᵀ ∈ Rn, f conditioned on this gives us a posterior Gaussian process with posterior
distribution over the samples P̃ such that f |X, y ∼ GP(µ̃, k̃) with

µ̃(x) :=µ(x) + kxXk
−1
XX(y − µX),

k̃(x, x′) :=k(x, x′)− kxXk−1
XXkXx′ ,

for any x, x′ ∈ X . The GP distribution over the functions are updated so that the prior mean and
kernel are perturbed by correction terms that depend on the observed data. Intuitively, in areas of X
where the observation data lives, kxX tell that us x is "similar" to the observations and so pushes µ̃ to
be similar to y. A similar intuition exists for k̃.

Noisy Regression: In reality, y is observed noisily, such as from the additive noise process yi =
f(xi) + εi. Suppose εi ∼ N (0, σ2) (which is rarely sufficient for real world data) for which σ > 0
and the noise is independently distributed, then we can write down the likelihood:

p(yi|f, xi) = N(yi; f(xi), σ
2)

if we take a sample of f i.e. take ω ∈ Ω and obtain a function f(·, ω). Since the labels are noisy, we
observe them as yi = f(xi) + εi, where εi is a sample from N (0, σ2).

The posterior update here yields
µ̃(x) :=µ(x) + kxX(k−1

XX + σ2In)(y − µX),

k̃(x, x′) :=k(x, x′)− kxX(k−1
XX + σ2In)kXx′ ,

for any x, x′ ∈ X . From a numerical analysis point of view, σ2In can be thought of an a jitter term to
ensure numerical stability when inverting kXX . This gives p(f(x)|X, y), but to link up the posterior
GP to the noisy observations y we must consider posterior predictive distribution

p(y∗|X, y) =
∫

Ω
p(y∗|f, x∗)p(f(x∗, ω)|X, y)dP(ω),

=
∫

Ω
N(y∗ − f(x∗, ω); 0, σ2)N(f(x∗, ω); µ̃(x∗), k̃(x∗, x∗))dP(ω),

=N(y∗; µ̃(x∗), k̃(x∗, x∗) + σ2),

using the formula for the convolution between 2 Gaussians. Intuitively, we average f over all possible
samples Ω to get the posterior predictive. The randomness for the predictive now only comes from
the noise variable ε.

Heterogeneous Likelihoods: GPs can also be plugged into existing generalised linear models
(GLMs) by replacing the linear component with the GP. An example is for classification, we can
model such responses using a Bernoulli likelihood Bernoulli(p(f(x))) with the probability being
modelled with p(f(x)) = logit−1(f(x)), where logit(x) := log(x/(1 − x)). You may be more
familiar with the equivalent mean function, or softmax(x) := logit−1(x) = 1/(1 + exp(−x)). The
general idea is that f(x) will be mapped onto the support of the distribution of the response via the
inverse link function.

It should be noted that no analytic posterior exists when using non-Gaussian likelihoods for the
response, in which case we would need to rely on posterior approximations such as the Laplace
approximation, expectation propagation (EP), Markov chain Monte Carlo (MCMC) or variational
inference (VI).

2.2 Classical Inference

There are many approximation methods for GPs. Here, we only name a few popular ones.

Maximum Likelihood: Recall that the hyperparameters of a GP observation model are the GP
hyperparameters (from the mean and kernel functions) and the model hyperparameters (e.g. standard
deviation). It is therefore possible to simply write down the unnormalised log-posterior and perform
a non-convex optimisation over these hyperparameters. However, the limitations for these methods
are that (i) the non-convex problem can be difficult to solve; (ii) the assumption that the true
hyperparameters are fixed and (iii) can be expensive due to O(n3) complexity without minibatches.

3

Markov Chain Monte Carlo: MCMC methods are often the gold standard for evaluating posterior
sample quality for many algorithms. Given a target distribution, it can be theoretically shown that
the samples from MCMC can asymptotically converge (n → ∞) to the target distribution under
mild condition. Convergence rates can also be derived by studying the geometric ergodicity of a
given problem. However, the limitations of MCMC are (i) Whilst asymptotically exact with O(nd)
complexity to the number of data points n and dimensionality d, the mixing time may increase as d
increases; (ii) it is difficult to parallelise due to the single-threaded, sequential nature of the algorithm;
(iii) in practice, Hamiltonian Monte Carlo (HMC) is often the workhorse, and it is often required to
have a good initial distribution and fine-tuned hyperparameters to achieve good results.

3 Sparse Gaussian Processes

Sparse Gaussian processes is a class of GP posteriors that are approximated by minimising a
divergence measure, D, with the posterior distribution of the GP. Here, we discuss the main classes,
sparse Gaussian process regression (SGPR; [Titsias, 2009]), sparse variational Gaussian processes
(SVGP; [Hensman et al., 2013]) and sparse variational Gaussian processes using MCMC (SGPMC;
[Hensman et al., 2015b]). In this discussion, we will only consider D = KL, the Kullback-Leibler
divergence. It is also possible to perform inference over GPs using other techniques such as conjugate
gradient (in gpytorch).

Variational Inference (VI): Given a target distribution p, VI seeks to construct an approximate
distribution q∗ such that

q∗ := argminq∈QKL(q||p) = argminq∈Q
∫
X log q(x)

p(x)q(x)dx,

where Q is a family of variational distributions that is user-defined. Note that Q may not necessarily
contain p, the target distribution, but will find the closest q∗ to p within the defined region Q. See
Figure 3 for an illustration.

The KL-divergence has the property that (1) it is always positive and (2) KL(q||p) = 0⇔ q = p. As
to how it is minimised, most methods are gradient-based and utilises modern software architecture for
gradient-based optimisation (such as L-BFGS or Adam). One caveat is that a low KL-divergence may
not necessarily guarantee good posterior approximations (see counterexamples in [Huggins et al.,
2020]).

Figure 3: Illustration of the variational approximation from Q.

3.1 Sparse Gaussian Processes

We will denote n as the number of training points, nb << n the minibatch size and m the number
of inducing points. For now, the inducing points are a set of function values u = (u1, . . . , um)ᵀ

such that ui = f(zi) for landmark points zi ∈ X for i = 1, . . . ,m. Therefore to define inducing
points, we simply need to pick landmark points z = (z1, . . . , zm)ᵀ ⊂ X appropriately, such as using
K-Means cluster centres [Oglic and Gärtner, 2017]. Sparse GPs approximate the posterior p(f, u|y)

4

gpytorch

using a variational approximation q(f, u) := p(f |u)q(u), where only q(u) needs to be specified and
optimised (other than the other model hyperparameters). We construct q(u) such that

q(u) = argminq∈QKL(p(f, u|y)||q(f, u))

= argminq∈QKL(q(u)||p(u))−
∑n
i=1 Ep(fi|u)q(u)[log p(yi|fi)],

=: argminq∈Q − ELBO(q)

= argmaxq∈QELBO(q)

in which fi := f(xi). Intuitively, all the information about the stochastic process is being compressed
into u and we simply need to learn the best q(u) such that the KL divergence is smallest to get a close
approximation q(f, u) to the true posterior.

We assume that we are in the iid Gaussian noise regression case. All of the upcoming approximations
are efficiently implemented in gpflow [De G. Matthews et al., 2017].

SGPR: This algorithm has per-iteration complexity O(nm2 + m2). Assuming that q(u) =
N(mu, Su), the optimal posterior could be computed analytically [Titsias, 2009], giving

ELBO(q) = logN(y; 0, Qff + σ2I)− 1
2σ2 Tr(kXX −Qff),

where Qff := kXZk
−1
ZZkZX . The optimal q(u) is exactly given by

q(u) =N(mu, Su),

Su = k−1
ZZ + k−1

ZZkZXkXZk
−1
ZZσ

2,

mu = σ2S−1
u k−1

ZZkZXy.

Therefore it only remains to optimise over the kernel hyperparameters and σ2 using gradient-based
optimisation. To perform prediction at a new point x ∈ X , we can obtain a posterior distribution

q(f(x)) :=
∫
p(f(x)|u)q(u)du = N(f(x); µ̃(x), ṽ(x)),

µ̃(x) =kxZk
−1
ZZmu,

ṽ(x) =kxx − kxZ(k−1
ZZ + k−1

ZZSuk
−1
ZZ)kxZ ,

and then subsequently the posterior predictive distribution

p(y|x) ≈
∫
p(y|f(x))q(f(x))df(x)

≡
∫

Ω
p(y|f(x, ω)))dP̃(ω)

=N(y; µ̃(x), ṽ(x) + σ2),

where P̃ represents the approximate posterior distribution over the GP samples. Although SGPR
may save you trouble from optimising the variational approximation, SGPR is only possible for iid
Gaussian noise regression problems and may not be computationally feasible when n (e.g. label-rich
datasets) or m (e.g. spatiotemporal datasets where the number of inducing points explode) are very
large.

SVGP: This algorithm has per-iteration complexity O(nbm
2 +m2). To overcome the difficulty

that n can be too large, [Hensman et al., 2015a] proposes a minibatch training procedure, in which
we only take a minibatch nb of the training points and do not use the optimal posterior q(u). We
estimate the ELBO with the minibatch estimate∑n

i=1 Ep(fi|u)q(u)[log p(yi|fi)]− KL(q(u)||p(u))

= EB [nnb

∑
B∈B Ep(fi|u)q(u)[log p(yi|fi)]]− KL(q(u)||p(u)),

≈ 1
L

∑L
b=1

n
nb

∑
i∈Bb

Ep(fi|u)q(u)[log p(yi|fi)]− KL(q(u)||p(u)),

where |B| = |Bb| = nb << n with minibatches B or Bb. In practice, we will only take L = 1. Note
that both terms, if we are in the iid Gaussian noise case, are analytically tractable. Otherwise, in the
non-Gaussian likelihood case, it is also possible to compute the first term using quadrature or Monte
Carlo integration.

5

gpflow

Differing from SGPR, we now have a lower per-iteration complexity and also need to learn the
variational parameters mu and Su. This could be done simply by using standard gradient descent
(e.g. Adam), alongside the other hyperparameters, but it could be shown that using natural gradient
descent could yield better solutions in practice [Salimbeni et al., 2018].

However..

SGPMC: This algorithm has per-iteration complexityO(nm2 +m2). SettingQ to the multivariate
Gaussian family may be too restrictive. In addition, one may also want to learn the hyperparameters
as non-point estimates. [Hensman et al., 2015b] proposes to directly sample q(u, θ), where θ are the
hyperparameters, via MCMC. It can be directly shown that the optimal posterior distribution is of the
form

log q(u, θ) = Ep(f |u,θ)[log p(y|f)] + log p(u|θ) + log p(θ)− logC,

for some constants C. Using some clever tricks to compute log q(u, θ) and initialise the MCMC
sampler, one can directly obtain samples of (u, θ) using MCMC. The only "issue" is that we lose the
tractability of the posterior GP.

3.2 VI Techniques

Interdomain Inducing Points: As discussed earlier, the easiest way to initialise them is to use K-
Means clustering and set u = f(z). Recall that given q(u) = N(mu, Su), the posterior distribution
is

q(f(x)) :=
∫
p(f(x)|u)q(u)du = N(f(x); µ̃(x), ṽ(x)),

µ̃(x) =kxZk
−1
ZZmu,

ṽ(x) =kxx − kxZ(k−1
ZZ + k−1

ZZSuk
−1
ZZ)kxZ .

As argued in [van der Wilk et al., 2020], the function observations u = f(z) are not the only pieces
of information we know about f . We could define a linear operator L such that u = Lf(·). For
example, Lf(·) = f(z) would give the usual inducing points, and Lf(·) = ∂

∂xd
f(z) would describe

the inducing points using the derivative on the dth dimension of z. Another popular approach is to
define L as an integral operator [Leibfried et al., 2021]

Lf(·) =
∫
X f(x)φ(x)dx, (dΠ(x)?)

where φ(x) are "inducing features". To construct these inter-domain inducing points, define
φ1, . . . , φm inducing features and obtain ui =

∫
X f(x)φm(x)dx.

Since f is random with sample distribution P, we have the prior u ∼ N (µu, kuu) with

(µu)i = EP[u] =
∫
X EP[f(x)]φi(x)dx =

∫
X µ(x)φi(x)dx,

k(ui, uj) = EP[(ui − (µu)i)(uj − (µu)j)] =
∫
X
∫
X k(x, x′)φi(x)φj(x

′)dxdx′.

In addition, given x or f(x), we have

k(f(x), ui) = EP[(f(x)− µ(x))(uj − (µu)j)] =
∫
k(x, x′)φi(x

′)dx′.

Given these 3 terms, we can now fully specify the posterior distribution q(f(x)) by replacing Z with
u for the relevant kernels.

To sum up, instead of picking the landmark points z in order to define inducing points, we now have
a more general formulation of inducing points via the integral operator and inducing features φi.
What remains is the choice of φi. As discussed in [Leibfried et al., 2021], there are many interesting
choices of φi. If φi(x) = δzi , where zi is a landmark point, then this formulation reduces to the
standard inducing points. A well-studied type of features is Fourier features: φi(x) = exp(−iωᵀ

i x),
where i is the imaginary number and ωi is an inducing frequency vector, which could be chosen on a
grid (in the frequency domain). See [Leibfried et al., 2021, Hensman et al., 2017] for further details.

6

Natural Gradients: As mentioned earlier, it may be more "natural" to learn q(u) using natural
gradients [Salimbeni et al., 2018] rather than standard gradient descent over mu and Su. One can
also perform optimisation using the geometry of Q:

ηk+1
t ← ηkt + ρk∇̃ξELBO(ηkt , θt),

where ∇̃ξ := F (ξ)−1∇ξ, where F (ξ) is the Fisher information matrix of q(u; ξ). One can iden-
tify a statistical manifold (Riemannian) with metric tensor being F (ξ) and it can be shown that
∇̃ξELBO(ξ, θ) is the Riemannian gradient if we pose ξ as lying on the statistical manifold and
perform Riemannian gradient descent.

4 Frontiers of Research

4.1 Inference Techniques

4.2 Interdomain Inducing Points

4.3 Deep Gaussian Processes

4.4 Latent Variable Gaussian Processes (LVGP)

4.5 State Space Models

4.6 Software

I would say that gpflow is the best package if you would like to use sparse variational GPs for
research. gpflux is also a nice package built on top of gpflow that one could use to implement deep
GPs. If you’re interested in state-space GPs, then markovflow is also a package under development
that is built on top of gpflow.

References
Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for Vector-Valued Functions:

a Review. arXiv:1106.6251 [cs, math, stat], April 2012. URL http://arxiv.org/abs/1106.
6251. arXiv: 1106.6251.

Alexander G De G. Matthews, Mark Van Der Wilk, Tom Nickson, Keisuke Fujii, Alexis Boukouvalas,
Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process
library using TensorFlow. The Journal of Machine Learning Research, 18(1):1299–1304, 2017.
Publisher: JMLR. org.

Vincent Dutordoir, Hugh Salimbeni, Marc Deisenroth, and James Hensman. Gaussian Process
Conditional Density Estimation. arXiv:1810.12750 [cs, stat], October 2018. URL http://arxiv.
org/abs/1810.12750. arXiv: 1810.12750.

David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. Additive gaussian processes. In
Advances in neural information processing systems, pages 226–234, 2011.

James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian Processes for Big Data. In Proceedings
of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI’13, pages 282–290,
Arlington, Virginia, USA, 2013. AUAI Press. event-place: Bellevue, WA.

James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational Gaussian
process classification. In Artificial Intelligence and Statistics, pages 351–360. PMLR, 2015a.

James Hensman, Alexander G Matthews, Maurizio Filippone, and Zoubin Ghahramani. MCMC
for Variationally Sparse Gaussian Processes. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015b. URL https://proceedings.neurips.cc/paper/2015/file/
6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

James Hensman, Nicolas Durrande, Arno Solin, and others. Variational Fourier Features for Gaussian
Processes. J. Mach. Learn. Res., 18(1):5537–5588, 2017.

Jonathan H. Huggins, Mikołaj Kasprzak, Trevor Campbell, and Tamara Broderick. Validated
Variational Inference via Practical Posterior Error Bounds. arXiv:1910.04102 [cs, math, stat],
February 2020. URL http://arxiv.org/abs/1910.04102. arXiv: 1910.04102.

7

gpflow
gpflux
gpflow
markovflow
gpflow
http://arxiv.org/abs/1106.6251
http://arxiv.org/abs/1106.6251
http://arxiv.org/abs/1810.12750
http://arxiv.org/abs/1810.12750
https://proceedings.neurips.cc/paper/2015/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
http://arxiv.org/abs/1910.04102

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K. Sriperumbudur. Gaussian
Processes and Kernel Methods: A Review on Connections and Equivalences. arXiv:1807.02582
[cs, stat], July 2018. URL http://arxiv.org/abs/1807.02582. arXiv: 1807.02582.

Felix Leibfried, Vincent Dutordoir, S. T. John, and Nicolas Durrande. A Tutorial on Sparse Gaussian
Processes and Variational Inference. arXiv:2012.13962 [cs, stat], July 2021. URL http://arxiv.
org/abs/2012.13962. arXiv: 2012.13962.

Dino Oglic and Thomas Gärtner. Nyström Method with Kernel K-means++ Samples as Landmarks.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 2652–2660.
PMLR, August 2017. URL http://proceedings.mlr.press/v70/oglic17a.html.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, Cambridge, Mass, 2006. ISBN 978-0-
262-18253-9. OCLC: ocm61285753.

Hugh Salimbeni, Stefanos Eleftheriadis, and James Hensman. Natural gradients in practice: Non-
conjugate variational inference in Gaussian process models. In International Conference on
Artificial Intelligence and Statistics, pages 689–697. PMLR, 2018.

Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial
Intelligence and Statistics, pages 567–574, 2009.

Mark van der Wilk, Vincent Dutordoir, S. T. John, Artem Artemev, Vincent Adam, and James
Hensman. A Framework for Interdomain and Multioutput Gaussian Processes. arXiv:2003.01115
[cs, stat], March 2020. URL http://arxiv.org/abs/2003.01115. arXiv: 2003.01115.

William J. Wilkinson, Arno Solin, and Vincent Adam. Sparse Algorithms for Markovian Gaussian
Processes. arXiv:2103.10710 [cs, stat], June 2021. URL http://arxiv.org/abs/2103.10710.
arXiv: 2103.10710.

8

http://arxiv.org/abs/1807.02582
http://arxiv.org/abs/2012.13962
http://arxiv.org/abs/2012.13962
http://proceedings.mlr.press/v70/oglic17a.html
http://arxiv.org/abs/2003.01115
http://arxiv.org/abs/2103.10710

	Introduction
	Background
	Gaussian Processes
	Classical Inference

	Sparse Gaussian Processes
	Sparse Gaussian Processes
	VI Techniques

	Frontiers of Research
	Inference Techniques
	Interdomain Inducing Points
	Deep Gaussian Processes
	Latent Variable Gaussian Processes (LVGP)
	State Space Models
	Software

